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Abstract

Climate change and global warming concerns have led researchers to alternative fuels, especially zero-
carbon fuels like hydrogen. Modifying existing combustion engines for dual-fuel operation can decrease
emissions of vehicles that are already on the road. To evaluate the engine performance and emissions of a
hydrogen-diesel dual-fuel modified engine a modern controller has been developed and compared to standard
diesel operation. This modified engine uses the diesel injection as a pilot to initiate the combustion of the
premixed hydrogen-air mixture. To control the injected hydrogen, a nonlinear model predictive controller
(NMPC) utilizing a deep neural network (DNN) process model is proposed. This DNN model has eight
inputs and four outputs. The model inputs are the previous cycle controller outputs (duration of injection
(DOI) main, the duration between the end of the pilot injection and the start of the main injection pre-2-
main (P2M), start of injection (SOI) main, and H2 DOI) and four measured engine outputs (indicated mean
effective pressure (IMEP), nitrogen oxides (NOx), soot, and maximum pressure rise rate (MPRR)). The
structure and hyperparameters of the DNN are optimized using a Bayesian optimizer. The final DNN model
structure has two hidden layers with 31 and 23 neurons, respectively, and a Leaky ReLU activation function.
This model has good accuracy, with a mean absolute error (MAE) of 0.18 bar, 7 ppm, 0.04 mg/m3, and 0.07
bar/CA for the IMEP, NOx, soot, and MPRR prediction, respectively. This DNN is then integrated into
the NMPC using the acados NMPC framework which allows for use on the embedded control hardware for
experimental testing. The DNN-NMPC is designed to minimize the engine-out emissions while satisfying
operating constraints and following an IMEP load trajectory. An average computational time of 2 ms/cycle
is observed when the controller is tested, making the control strategy real-time feasible and faster than
recurrent networks such as long short-term memory networks (LSTM) and gated recurrent units (GRU).
The control performance of the DNN-NMPC for hydrogen-diesel dual fuel showed that an IMEP reference
could be followed with an MAE of 0.19 bar and the average H2 utilization of 68%, while also substantially
reducing engine-out soot by 87% but increasing engine-out NOx by 78%.

1 Introduction

Transportation produces about 20% of total carbon dioxide (CO2) emissions [1], with heavy-duty diesel freight
trucks producing 3% of total CO2 emissions [2]. While compression ignition (CI) engines have unique character-
istics, including higher energy efficiency and torque production than gasoline engines, their combustion process
releases a variety of harmful gases, such as hydrocarbons, nitrogen oxides (NOx), particulate matter (PM) or
soot, carbon monoxide (CO), and CO2 [3]. Alternative fuels, especially zero-carbon fuels like hydrogen, have
been investigated to reduce GHG emissions from combustion [4]. Performance and emission characteristics at
different speeds and hydrogen flow rates were tested in [5]. They revealed that hydrogen flow rates of 21.4 l/min
and 42.8 l/min significantly impact engine coefficient of variation and improve CO, CO2, and smoke levels. For
a hydrogen ratio of 20% compared with pure diesel conditions, the peak pressure increased by 7.7%, and the
cumulative heat release rate increased by 3.7% [6].

Investigation into the control of H2/diesel engines instead of relying on experimental analysis for stationary
points for emission analysis has some challenges, and the most significant part is modeling. A combustion model
for hydrogen-natural gas/diesel dual fuel engines based on the separation of the different types of combustion
modes was developed by first treating the combustion of the pilot fuel by jet modeling, then the combustion of
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the gas mixture by a mathematical model based on the Gaussian function. This model has a maximum error
of 2% compared to the conventional Wiebe model and is useful for emission prediction and preliminary design
[7], but not for real-time model-based control. Machine learning (ML) based models that are highly accurate
and efficient enough to be used in real-time applications after training are being developed [8]. Artificial neural
networks (ANN) have been widely used for modeling and controlling IC engines. For instance, [9] used ANN to
model performance and exhaust emissions of a gasoline engine with mean relative errors (MRE) values in the
range of 0.46–5.57%. Optimization techniques can be used to enhance the effectiveness of ML models [10].

Model-based controllers, such as model predictive control (MPC), rely on an embedded model. ML-based
MPC is an effective control strategy that is not yet commonly used in automotive applications [11] but is
used widely in a range of applications from the chemical process industry to robotics and finance [12]. These
applications take advantage of the nonlinear model predictive controller’s (NMPC) ability to provide an optimal
control solution while incorporating constraints on system states and controller outputs. A deep neural network
(DNN) with one long-short-term memory (LSTM) layer has been used as a model for NMPC for real-time
experimental control of a diesel engine has been shown in [13]. In [13] where a 7.9% reduction in fuel consumption
while decreasing NOx and PM by up to 18.9% and 40.8%. There is however still research required on the
generalization of the ML-based model and H2/diesel dual fuel engine control. In this paper, a shallow DNN
model for an H2/diesel dual-fuel engine is embedded as the model in NMPC in a hydrogen diesel dual-fuel
engine to improve the engine’s performance and emissions.

The main contributions of this paper are summarized as follows: a model of the indicated mean effective
pressure (IMEP), nitrogen oxides (NOx), soot, and maximum pressure rise rate (MPRR), of a dual-fuel H2/diesel
engine using a shallow-optimized DNN model is developed; an average computational cost of 2 ms/cycle with
high accuracy provides a fast and precise model for NMPC combustion H2/diesel dual-fuel engine control for
real-time application; real-time DNN-NMPC for the H2/diesel dual-fuel engine with load control and emissions
constraints while significantly reducing soot is experimentally implemented on a 4.5-liter diesel engine on one
of the four cylinders.

2 Methodology

Details of the NMPC and a data-driven model are provided below. With an accurate model, the NMPC can
control the engine to reduce emissions, increase performance, and satisfy constraints. The controller tracks
the desired IMEP and minimizes emissions. ML is used to model the engine for the controller, as an accurate
physics-based model is not realtime capable. The DNN model has four outputs and eight inputs.

2.1 Nonlinear Model Predictive Controller

NMPC has a cost function and computes the current control outputs by solving a nonlinear program at each
sample instance [14]. The optimization problem involves using a model-based approach to predict the system’s
behavior based on the current states. Finally, the NMPC algorithm is implemented in real-time on the Raspberry
Pi using MATLAB/Simulink for H2/diesel engine control, using acados [15] as a solver. acados is a free and
open-source package to implement the NMPC controller. For the computation of the Hessian in the underlying
sequential quadratic programming (SQP) algorithm, the Gauss-Newton approximation has been used in this
work. The reference input, the rate of change for controller outputs, and input-output weights (described in
Table 1) are:

ri =
[
rIMEPi

, 0, 0, 0
]⊤

, (1)

R = diag
(
r∆uDOImain

,r∆uP2M ,r∆uSOImain
r∆uH2DOImain

)
, (2)

Q = diag (q1, q2, q3, q4, r1, r2, r3, r4) = diag (qIMEP, qNOx
, qSoot, qMPRR, rDOImain

, rP2M , rSOImain
, rH2DOImain

) .
(3)

where the reference ri and the positive definite matrix weights Q and R are selected to penalize deviations from
the requested load while minimizing NOx and soot emission concentrations and rate of change in controller
outputs. The fuel consumption terms are needed to minimize the amount of injected fuel.

2



The cost function, J, for the NMPC is defined as:

J =

N∑
i=0

∥rIMEPi
− yIMEPi

∥2q1︸ ︷︷ ︸
Load Tracking

+
∥∥yNOxi

∥∥2
q2

+ ∥ySooti∥
2
q3︸ ︷︷ ︸

Emission Reduction

+ ∥yMPRRi
∥2q4︸ ︷︷ ︸

Combustion Stability

+
∥∥uH2DOImaini

∥∥2
r4︸ ︷︷ ︸

Hydrogen Reduction

+

∥∥uDOImaini

∥∥2
r1
+
∥∥uP2M

i

∥∥2
r2
+

∥∥uSOImaini

∥∥2
r3︸ ︷︷ ︸

Diesel Reduction

+ ∥∆ui∥2R︸ ︷︷ ︸
Oscillation Reduction

+ ∥Wi∥2S︸ ︷︷ ︸
Constraint Violation

(4)

where W contains slack variables and S is the penalty for constraint violation.

The chosen cost function Equation (4) aims to minimize NOx and soot concentrations while reducing diesel
and hydrogen consumption and maintaining the requested output torque in stable combustion.

Table 1: MPC weights, constraints and rate of the change on inputs and outputs of the engine.

Variable Rate of Variable Change

Variable Weight (Q∗) Min Max Weight (R∗∗) Min Max

IMEP [ bar] 10 0 9 - - -
NOx [ppm] 0.0001 0 1000 - - -

Soot [mg/m3] 0.0001 0 2 - - -
MPRR [bar/◦CA] 0.5 0 3 - - -

DOImain [ms] 1 0.17 0.5 1 -1000 1000
P2M [ms] 0.0001 0.43 0.80 1 -1000 1000

SOImain [◦CAbTDC] 0.0001 -2 3 1 -1000 1000
H2DOImain [ms] 0.5 1 5.5 5 -1000 1000

∗ the positive definite matrix weights which selected to penalize deviations from the
requested load while minimizing NOx and soot emission concentrations, ∗∗ the positive
definite matrix weights which selected to penalize rate of change in controller outputs.

2.2 Data-driven Engine Model

The experimental testing is performed on amodified four-cylinder Cummins QSB 4.5-liter diesel engine equipped
with emission measurement equipment. This is a direct-injected diesel engine without external after-treatment
or exhaust gas recirculation (EGR). The hydrogen is injected into the intake air manifold. To measure NOx

emission from the engine, a Bosch sensor with ECM electronics (P/N: 06-05) is used, whereas a Pegasor particle
sensor (PPS-M) is utilized to measure soot. Additional details regarding the experimental setup can be found
in [13].

The data-driven model is a DNN model, which has been optimized using the Bayesian optimizer [16]. The
resulting DNN model for the H2/diesel engine has two hidden layers with 31 and 23 neurons and uses a Leaky
ReLU as an activation function. The structure of the DNN is shown in Figure 1. The inputs of the model are:
the duration of injection (DOI) for main injection (DOImain), start of main injection (SOImain), the duration
between the end of the pilot injection and the start of the main injection pre-2-main (P2M), DOI for hydrogen
(H2DOImain) and the measured outputs of the engine from the previous cycle to capture the dynamic of the
system. The outputs of this model are IMEP, NOx, Soot, and MPRR. The dataset for training this model
is collected by varying the engine inputs with a pseudo-random generator for all of the controlled variables:
DOImain ms, P2M ms, SOImain

◦CAbTDC, and H2DOImain ms. The mean value of the training dataset is 6.5,
641, 0.5, and 0.9, with standard deviations of 1.9, 369, 0.04, and 0.9 for IMEP bar, NOx ppm, soot mg/m3,
and MPRR bar/◦CA, respectively. In Table 2, the statistics of the dataset and the results of our prediction in
different datasets can be seen.

To achieve cycle-by-cycle control, all the calculations must be within one engine cycle time - approximately
20 ms at 1500 rpm. The computational cost of the developed model is 2-3 ms on realtime hardware, making it
suitable for embedded in NMPC and then running the online optimization.
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Fig. 1: Structure of the proposed deep neural network (DNN) model for engine performance and emission
concentration modeling with eight inputs and four outputs. DOI: duration of injection, SOI: start of injection,
P2M: the duration between the end of the pilot injection and the start of the main injection pre-2-main,
main: main injection, H2: hydrogen, IMEP: indicated mean effective pressure, NOx: nitrogen oxides, MPRR:
maximum pressure rise rate and k-1 indicates the previous cycle.

Table 2: Training dataset characteristics and DNN model results of the H2/diesel dual-fuel engine. IMEP:
indicated mean effective pressure, NOx: nitrogen oxides, MPRR: maximum pressure rise rate.

Metrics Data (Number of Data) IMEP [bar] NOx [ppm] Soot [mg/m3] MPRR [bar/◦CA]

Max

All Training Data (82,348)

10.5 1862 0.8 10.0
Mean 6.5 641 0.5 0.9
Min 1.0 66 0.3 0.2
STD∗ 1.9 369 0.04 0.9

MAE∗∗

Training (59,495) 0.125 7 0.020 0.204
Validation (10,500) 0.119 7 0.022 0.173
Testing (12,353) 0.138 8 0.022 0.232

Real-time Prediction (5,025) 0.182 7 0.037 0.065

RMSE∗∗∗

Training 0.234 13 0.025 0.432
Validation 0.208 11 0.027 0.349
Testing 0.272 16 0.027 0.506

Real-time Prediction 0.243 9 0.047 0.082

R2-score

Training 0.998 0.999 0.997 0.878
Validation 0.999 0.999 0.997 0.890
Testing 0.998 0.999 0.997 0.854

Real-time Prediction 0.998 0.999 0.878 0.941

∗ standard deviation, ∗∗ mean absolute error, ∗∗∗ root mean square error.

3 Results and Discussion

The DNN-NMPC for IMEP tracking while minimizing emission concentration (NOx and soot) and fuel con-
sumption while meeting constraints on inputs and outputs has been experimentally tested. The controller is
subjected to step and smooth changes in IMEP reference to check the command following. The controller
is also compared with the production diesel engine ECU, which serves as a benchmark (BM) for comparison
with the NMPC. The Cummins production ECU is duplicated on our prototyping ECU (dSPACE MABX) to
provide a BM. The results of controlling the IMEP load with this controller and its constraints can be seen in
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Figure 2. The IMEP follows the reference trajectory (dashed line) with a mean absolute error (MAE) of 0.19
bar. The reference load, IMEP, and tracking error are shown in Figure 2 (a). IMEP tracking errors tend to
increase when the reference is changed quickly and sharply. Since the optimized DNN model has no memory,
unlike LSTM models, making fast transient prediction difficult. In Figure 2 (b), the NOx emission of the engine
slightly exceeds the upper limit constraint because it is implemented as a soft constraint in the NMPC. The
average NOx per cycle is 470.34 ppm/cycle. The cumulative soot emissions in Figure 2 (c) are 413.03 mg/m3.
In Figure 2 (d), the MPRR is less than 1 bar/◦CA during the test. The engine inputs (controller outputs) are
shown in Figure 2 (e,f,g,h). In Figure 2 (h), by increasing the DOI of H2, IMEP is increased. As the IMEP
reference is increased, the controller increases the H2 with the main diesel injection. At 300-350 seconds, the
controller increases the H2 instead of diesel to produce a higher load. This experimental test shows the negative
correlation between H2 and soot and the positive correlation between H2 and NOx. There, increasing H2 over
diesel to generate more power reduces soot and increases NOx. At 100-150 seconds, the controller increased H2
and diesel to produce a higher load. Resulting in both soot and NOx increasing. However, the NOx increased
proportionally less than the 300-350 seconds case. As the IMEP reference is increased, the controller increases
the H2 with the main diesel injection. In Figure 2 (h), the average H2 utilization is 68%, which varied from
29% to 95% during the test.
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Measured engine outputs and DNN-based NMPC controller outputs for the experimental test

Fig. 2: IMEP tracking results for real-time NMPC with measured engine outputs and DNN-NMPC controller
outputs for the experimental test with their limitation bounds—(a) indicated mean effective pressure (IMEP),
its reference trajectory and error, (b) nitrogen oxides (NOx), (c) Soot (upper limit for Soot is 2 mg/m3), (d)
maximum pressure rise rate (MPRR) (upper limit for MPRR is 3 bar/◦CA), (e) duration of injection (DOI)
of main injection, (f) the duration between the end of the pilot injection and the start of the main injection
pre-2-main (P2M), (g) start of injection (SOI) of main-injection, (h) DOI of hydrogen injection.

The BM diesel was implemented in the same reference for IMEP tracking and followed the trajectory with
MAE 0.3 bar. The BM’s average NOx and soot emissions are 263 ppm and 0.64 mg/m3, respectively.
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4 Conclusions

Using an NMPC allows for control of both hydrogen and diesel injection to track IMEP subject to engine-
out emissions, and pressure rise rates. An optimized DNN model has been created with the help of Bayesian
optimization, which has two hidden layers of 31 and 23 neurons that can represent the engine dynamics: IMEP,
NOx, soot, and MPRR. The DNN model used has 1,111 learnable parameters to model the emissions and
performance characteristics of a modified 4.5-liter Cummins compression ignition engine. The DNN is embedded
within an NMPC and implemented in real-time to minimize H2/diesel dual fuel engine-out emissions and fuel
consumption while enforcing constraints on engine inputs and outputs. With an average H2 utilization of
68%, the controller reduced soot concentrations by up to 87% compared to the Cummins-calibrated production
controller. The mean controller computational time is 2 ms, 10 times smaller than 20 ms available calculation
time at 1500 rpm. However, the controller tracking error in transient dynamics was too high due to the
DNN reliance on only one previous cycle. More past cycles will be added in future work to help improve
the controllers transient response. Furthermore, using hydrogen to increase the IMEP led to a predictable
increase in chamber temperature and a 78% increase in NOx concentrations compared to the Cummins-calibrated
production controller.
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